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A formalism has been developed and incorporated in the computer code FAR to solve the 
magnetohydrodynamic (MHD) equations compressibly or incompressibly for either ideal or 
resistive modes. A linear subset or the full nonlinear set of equations can be solved, in toroidal 
geometry, with no ordering assumptions. Significant features of the formalism include ( 1 j the 
addition of compressibility by adding two equations to a basic incompressible set, (2) the 
ability of the code to converge very rapidly for linear calculations, and (3) the use of a 
diffusive term in the evaluation of the compressible part of the velocity. This term damps the 
short-wavelength waves and allows a time step size which is comparable to that needed for 
incompressible simulations. ‘i 1990 Academic Press, Inc. 

1. INTRODUCTION 

Because of the complexity of the problem, MHD calculations in toroidal 
geometry are usually done with some simplifying assumptions. Although exceptions 
exist [l], these calculations frequently involve the use of reduced [Z] or ideal [3] 
equations or an incompressibility assumption [4]. The reduced equations neglect 
the toroidal components of the perturbation and thus allow a significant reduction 
in the complexity of the equations to be solved. Neglecting resistive effects casts the 
problem in a form involving a self-adjoint operator, which allows the use of a 6B 
approach. In a time evolution approach, incompressibility reduces the number of 
equations to be time-advanced by two since the time-independent incompressibility 
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assumption serves as one equation and the equations can ‘be cast in a form that 
does not explicitly require a pressure. In this paper, we report a method for so!ving 
the full MHD equations with rcsistivity and in toroidal geometry which uses none 
of the preceding approximations and which has been implemented in the computer 
code FAR. 

First, the equalions used are developed in Section 2, and the numerical method 
is desrribed in Section 3. The boundary conditions are discussed in Section 4. and 
the relaxation of the strict nonlinear compressible time step restrictions is 
considere in Section 5. Results are given in Section 6, and the discussion and 
conclusions, In Section 7. 

2. E~mrrms 

We begin with the usual MHD equations, namely tin mks units 1. 

and an equation of state can be chosen to satisfy either incompressible (V V= 3; 
or compressible (V “6’+ 0) model assumptions. For the compressibie model, a 
pressure evolution equation is used, 

?p 
-Ez -v.vp-J-y.);. 
?? 

where r is the ratio of specific heats. The incompressible equation of state is 
specified later by Eq. ( 1.5). 

In our formulation the magnetic field is written in terms of the usual vec:cr 
potential (A) as 

B=VxA: :7, 

the velocity is expressed as a sum of compressible and incompressibk pars as 

v=vx~++pILx i&j 

and the mass density (p,,) is taken to be a constant. The preceding specification of 
the velocity would seem to overspecify the velocity since a three-component ;‘ec!or 
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(Q) and a scalar (0) are being used. However, a gaugelike choice is made after 
specification of the coordinate system, which will remove the apparent over- 
specification. 

From Eqs. ( 1 ), (2), and (7), we find that 

l3A 
t=VxB-nJ+Vu., (9) 

where CI is the electrostatic potential. 
Taking the curl and divergence of Eq. (3) allows the velocity evolution equations 

to be divided into incompressible, 

XJ 
~=Vx(VxU)flVx(JxB), 

m 
(10) 

and compressible, 

aw -= 
at -;v2v2+v.(vxuj 

-+ VP++ V-(JxBj, (11) 
nr M 

parts, where 

and 

W=V.V=V’cc, (12) 

U=VxV=Vx(Vxn). (13) 

Although Eq. (10) has the form of a vector equation, only two of the components 
are independent since 

v.u=v.(vxvj=o (14) 

can be used to specify the third component. Still to be specified is the choice of 
gauge for the magnetic field and the effective choice of gauge for the velocity field. 
This is done below. For the incompressible mode, (a/at)(V . V) = 0, which gives the 
effective equation of state as 

V2p=V-(JxB)+V2VL+p,V.(VxU). (15) 

Thus, for incompressible calculations, Eqs. (9) and (10) are solved with Eq. (15) 
specifying the pressure (as a diagnostic). In addition, for compressible calculations, 



Eq. ( i! ) gives the compressible part of the velocity evolution, and Eq. (6) defines 
the evolution of the pressure. The use of an ideal equation of state is not consistent 
with energy conservation since ohmic heating is neglected. The resistiviiy it?) is 
assumed time independent and is specified by the inverse of the flux surface average 
of the toroidai equilibrium current density. No explicit external electric field is 
imposed. However, the purely equilibrium resistive terms are dropped which seuld 
be viewed as the imposition of an electric field. 

A nonorthogonal coordinate system is used which is based on the toroitiai 
equilibrium conliguration [7] with coordinates p, 8, and i [la]. An equihbrium 5ux 
surface is labeled by p, the poloidal anglelike variable 8 is chosen so :hat the 
equilibrium magnetic field lines are straight, and the geometric toroidal angle is c. 
With this definition of the coordinate system, the gauge can now be specided 2nd 
is chosen to be 

with a similar gaugelike constraint on the velocity 

Additional details of the coordinate system are given in 1181. 
With the preceding specifications and the dehnitio ; = -@ (the polo&n 

magnetic flux function), A, = -x (the toroidal magne x function), 0; = -# 
(the poloidai stream function), and GO= -A (the toroidal stream function;, he 
equations that are solved are (in dimensionless form): 

2x 
- = - -$ ( VaBc - V’B”) + ifJp. 
ip 

i!85 
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where 

and 
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8W -= -- 
at 

i vT+~$ $ [~~(J,B~-J;B,)-(~,V,-U;V~~] 

+!-A 
i 
-$ [s2(~,B,-J,B:)-(u,~,-uU,,V;)1 

I 

+$ 
4 i 

$ [S*(JpB,-JgBp)-(Ll~pVB-UHVp)] 

+ DAV: U’, (23) 

ap -+ .P*+pIP+v:$ 
at ( ap p ae > 

1 
) (24) 

V: in Eq. (23) is equal to V’ above with the toroidal terms omitted. 
The vector components of the magnetic field are given by 

Be=; $, 

Bi = -’ S(PX) 

P SP ’ 

(25) 

(26) 

(27) 

(28) 

(29) 
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and the current density components are 

The three components of the velocity are given by 

The components of the vorticity are defined as the current density with .,1 
repiacing x and d replacing $. 

In Eqs. (18)-(X j, ail lengths are normalized to a generalized minor radius 2 
efined by a’ = R, j R-I dF:1(2r2), with integration over the plasma volume). ?he 

resisrivity is normalized to trO (its value at the magnetic axis); the time. to the 
resistive difkrion time r, = a’p,it/,, where p0 is rhe vacuum magnetic permeability; 
the magnetic field, to B, (the toroidal vacuum field at the plasma major radius 3,); 
the velocity, to Q/T,; and the pressure, to p0 (its equilibrium value at the mageeiic 
axis). R is the major radius coordinate normalized to R,, and S = ~.,!‘r~~ is the 
ratio of the resistive time to the poloidal Alfven time [tHp = RO(pO p,)’ ‘;‘BOj. Tile 
quantities ,flo and E are given by fiO = pO(0)/( B$2~,) and E = a/R,. In Eq. (23 j. a 
term (D,~~cQ) has been added, which is discussed later (a, is normalized to 
(;,1;5,. ). 
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The above equations are solved by initializing with an equilibrium, perturbing it, 
and following the development. The equilibrium used is a solution to the basic 
Eqs. (18)-(24) with the time derivative of all quantities set to zero, v = 0 and ?I= 0 
(we use an ideal equilibrium). This is discussed in more detail in Ref. [4]. Since 
axisymmetric perturbed modes (n = 0; see next section) are used, quasilinear 
equilibrium modifications are included exactly. 

For numerical solution, the quantity c( in Eqs. (18 j-(20) is replaced in a 
consistent manner by 

This replacement simplifies some of the terms involved in the solution of these 
equations. It also allows the rational surfaces to be identified more cleanly by 
placing the relevant operator in one and only one mode. This use of one mode 
minimizes problems with round-off errors numerically. From this point on, cx* is 
referred to as M. 

Equations (lS)-(24), together with the definitions given by Eqs. (25t(35), give 
the equations that are numerically time-advanced in the computer code FAR. For 
incompressible calculations, Eqs. (18)-(22) are time-advanced and w is zero in the 
velocity components given by Eqs. (33)-(35). Since iiw/i?t = (a/at)(V .V) must be 
identically zero, Eq. (23) serves as a diagnostic equation to determine the pressure. 
For compressible calculations, on the other hand, the full set of equations is used. 

The preceding form of MHD equations is particularly useful because of the 
natural transition between compressible and incompressible models. It is also very 
useful to have direct access to the fast-wave contribution to the MHD equations 
(see Section 6). The form used here gives such direct access through Eq. (23) (for 
WE V .V). Thus, for modes that do not depend on the details of the fast waves, the 
wave motion can be damped or modified directly through Eq. (23). 

3. NUMERICAL METHOD 

For computations with the computer code FAR, the dependent variables (X) are 
separated into equilibrium (X,,) and perturbed (8) parts, 

e, 6 i) = ~,,(P, 0) + a% 0, il. (36) 

The purely equilibrium terms cancel by use of the equilibrium equation, and 
only terms that are linear or quadratic in the perturbed quantities remain. They are 
expanded in Fourier series in angular variables 0 and i [9]. Assuming up-down 
symmetry of the equilibrium, the perturbed quantities 3, 2, p, and 6 can be 
expanded in cosine functions, 

a, 0, a = c L,(P) costtne + ni), (37) 
WI. ,I 
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and 3, II, and 5 in sine functions, 

For incompressible calculations, p and Q are, of course, omitted. 
In the radial direction (p), centered finite differences are used with the provision 

for a variable mesh spacing [9]. The equations to be time-advanced can be twitten 
symbolically as 

AF,X=BX+X+C ;3g; 

where X is rhe vector of unknowns, A and are two-dimensional matrices 
containing the linear coefficients, and C is a three-dimensional matrix that gives the 
nonlinear strength of each quadratic term. Each component of the vector is :cne 
Fourier component of the unknown evaluated at one of the grid points. The linear 
terms are evaluated implicitly by using a time-centered scheme that allows very 
Barge time steps to be taken for linear calculations (C s 0). As discussed in detail in 
Ref. [4], these very large time steps give convergence in only a few iterations. The 
time step then becomes a convergence parameter that can be chosen to accelerate 
convergence if an approximate value for the growth rate is known, as is usually the 
case. The nonlinear terms (C # 0) are added explicitly, and nonlinear calcula:ions 
must therefore be done with greatly reduced time steps sizes, The step size required 

T 
for nonlinear compressible calculations is discussed later in more derarl. the 
Fourier series of Eqs, (37) and (38) are truncated, and a finite difference representa- 
tion is used in the radial coordinate p with a three-point, centered, uniform spatial, 
finite difference scheme. This three-point finite difference scheme gives a block 
tridiagonal matrix. Details of the procedure used to set up the blocks and the 
method of inverting the large matrices is contained in Refs. 14. 61. This scheme 
does not allow the direct evaluation of radial third derivatives. Examination of the 
equation for tt’ [Eq. (23)] shows that such terms appear linearly through SJ,. ill; 
and ?J;!?p. These are handled by the technique of using auxiliary equations. 

Thus, for example, the third-order equation, 

x= 2; F, gJ(J) 

can be wrrtten as one first-order plus one second-order equation as 

z=“;y~ i42) 

In the compressible version of FAR, the expressions for JP9 S,: and 2; are treated 
by using auxiliary equations (an equation is added: J! -S($, ;I) = 01. Two (ii!: S, ) 
are needed to allow the third derivatives to be taken (in Eq. (33))Y and the third 
(Ii;) is added simply to treat all .J;s in a symmetric fashion. With the i 
scheme used in FAR [I4] for linear calculations, the coding is also much si 
if the auxiliary equations were not used, the implicit scheme would require ZJ,,‘?p 



278 CHARLTON ETAL. 

to be evaluated analytically (and coded). This technique is also useful to impose 
boundary conditions on quantities like Jj since, without the dummy equation, one 
does not have direct access to the quantity to impose a boundary condition. 
This property of the technique allows the edge boundary conditions on Ji to be 
consistent with the boundary conditions assumed in the magnetic equations. This 
is discussed in Section 4. 

An additional consideration is the first-order equation for M (Eq. (18)). Solving 
the equation as written by the.implicit matrix technique leads to a grid separation 
problem. In the FAR code this is solved by making the transformation 

(43) 

where D, is a constant. This change transforms Eq. (18) into a second-order 
equation and modifies linear terms in the equations for toroidal flux (Eq. (19)) and 
for poloidal flux (Eq. (20)) but otherwise leaves the original set of equations 
unmodified. The second-order equation is desirable because the present three-point, 
centered numerical scheme evaluates first derivatives at a given grid point by using 
the function values only at adjacent grid points. This leads to grid separation. When 
a second derivative is evaluated, on the other hand, the values of the function at 
three grid points are used; use of the three values couples the grid and alleviates the 
problem. This “smoothing” from D, is due to the numerical radial differencing, but 
tests have shown that the results are independent of D, over a wide range. 

Typically results are obtained with the code using h 300 grid points and .V 10 
Fourier components. This number of grid points can be too few for very small 
growth rates when a convergence study is needed (i.e., find the growth rate using 
several different grid spacings and extrapolate to zero grid spacing in some 
reasonable way). The above number of Fourier components can be too few for 
some modes. A low IZ ballooning mode for instance can require -30. Typical time 
requirements on a CRAY II computer are a few tens of minutes for a linear result 
in toroidal geometry and a few tens of hours for a nonlinear calculation also in 
toroidal geometry. 

4. BOUNDARY CONDITIONS AND ORIGIN BEHAVIOR 

The conditions on the unknown quantities at the magnetic axis are found by 
requiring that none of the fields, and none of the fields obtained from them by 
applying standard vector operators, have singularities at the origin. As in Ref. [4], 
this means that, for the scalar fields (ct, p, and for w) and for the toroidal com- 
ponents of vector fields (ICI = A;, and 4 = -Q;) the (vtzn) harmonics must approach 
the origin as 

k=O 

(44) 



For poioidal components (I= -A, and A = -R,), origin con 

is;ith the additional constraint that, for WI #O, the leading terms of the D end i? 
components satisfy 

The pius sign is taken for a 6 component with a cosine series, agd the minus sigrn 
is taken when the 0 component has a sine series. in FA , the scaL3r fieids 9, 2: 3nC 
CD ar.d rhe vector fields $ and d, are taken to satisfy Eq. 144;. However, 2s is 
discussed in detail in Ref. [4]? x is taken to be zerr d 2t the origin.. The pokkiai 

a’ector fields .y and A are taken to satisfy Eqs. i45) and (6). It can the11 be seer, :~EL 
the gauge conditions A, = 0 and Qp = 0 imply, together with Eq. (47 j. that a’. = 0 
in Eq. (45) when m f 0. Hence, x,,,,, -- p”“’ + ’ as the origin is approached d.iid 
similarly for A,,, 

A perfectly conducting wall boundary condition is imposed at the plasma edge 
which implies 

B” ( I, = u = 0. i.47; 

This is satisfied by requiring 

The edge values for $ and 1 are time-advanced by 

and 

The solutions of Eqs. (49) and (50) are consistent with Eq. (48) provi 
n$,,.,: Ip=u=nAl,,,, jpZu. Equations (49) and (50) are simply Eqs. (19) and !,ZO) 
linearized and with JC /p =u = J0 1 p = u = 0 (as required by a conducting wall). Ar: 
additional boundary condition implied by the perfectly conducring wall is 

k’” Ip=“=o. +j;j 

For incompressible calculations. Eq. (51) is satisfied in the same mamxx as 
Eq. (47) is, namely. by requiring 
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For compressible calculations, the additional constraint (see Eq. (33)) 

( 
ace I do PP-+gP-- 

g ap P al > 
=o 

p==n 
(531 

is needed. This separation of the boundary condition, VP 1 p = a = 0, into two parts 
(Eqs. (52) and (53)) is permitted because of the gauge invariance of the problem. 
Equations (49 j, (SO), and (53) give boundary conditions for II/, x, and cc) that are 
highly coupled (the boundary value for a given in, IZ depends on all other HZ, IZ 
pairs). 

For a consistent solution to the problem. the number of boundary values 
imposed must be the same as the order of the equation. In Table I, the orders of 

TABLE I 

Boundary Values 

Linear 

Incompressible Compressible 

Variable Order Origin Edge Order Origin Edge 

I) 2 P mi Time advanced 3 P 
m Time advanced; 

J:l,-0 

x 2 P 
m + I Time advanced 3 P 

I>, + 1 Time advanced; 

J,, lo = 0 
,ct 2 0 Extrapolated 1 0 Extrapolated 

n 2 pm+‘; S/l = 0 r2,4l, = nz&, 2 P *l+l; c7,‘l =o ~~lo=fi%lo 

q5 2 P n1 fi~~lo=W4, 2 P 
m n.ll,=n& 

(0 

P 

2 P 
nz 

[ g'"?p + 

g’~‘(l~p)s,+J],=o 
2 P 

lli 0 

Nonlinear” 

Variable 

Incompressible 

Order Values 

Compressible 

Order Values 

* 1 J’(,=O 0 
% 1 Jo/,=0 0 
a 0 0 
A 1 VI, = 0 1 cq, = 0 
d 1 Ci’l,,=O 1 uq,,=o 
m 1 j’?I, = 0 

P 

n Order and boundary values in addirion to those for the linear problem. 
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the equations to be solved are given, together with the boundary values imposed. 
These boundary values are limited by three constraints: (I) the order of the 
equation for each variable (as just mentioned), (2) the perfectly conducting wall 
boundary condition that specifies the physics at the boundary, and (3) the time 
independence cf t,‘P and BP at the boundary [S]. The Ias 7: condition results because 
the normal components of the velocity and the magnetic field must be zero at the 
wall independent of time and thus d, VP 1 p = ~ = 2,B” i I’ = a = 0. Since the problem is 
formulated in terms of magnetic fluxes and velocity stream functions, one does no! 
have direct access to VP and BP. 

Ht can be verified by direct calculation that, for the linear problem, the boundary 
values shown in Table I guarantee the time independence of BP and &” if 
i&9 / eq I p = ‘I =O. Nonlinearly, only instabilities that have a small perturbation near 
the wail can be studied, tihich provides no additional physics iimitation on this 
faxed-boundary conducting wall model. The imp~emen?arion of these boundary 
conditions requires that the solution be formed from a ~ornb~~~t~o~ of the 
homogeneous and inhomogeneous solutions to the discrete matrix form. Fi:il 
details of this are given in Ref. 141. 

Table I shows that the order of the equations an the number of equations 
increase when compressibihty is included. Since the incompressible equations are a. 
particular limit of the fully compressible set (f-= K i, their boundary condition 
must be a subset of those for the fully compressible equations. Thus: for instance, 
the change from second to third order in (k and I( as compressible terms are 
included requires two additional boundary values. For consistency, these values are 
imposed on J; / (1 and JO lu through the new auxiliary equations. 
turn. is consistent with the assumption used in time-advancimg the boundary va!:bes 
for ri/ and x in the incompressible case. It would be difficult to impose the rerr: 
boundary values in any other manner because they must be included in such a wag 
that they are not seen by the incompressible problem. If they are seen, the pro2.en-r 
would be overspecified. Since J; and JO are not explicitly required incompressibiy, 
they satis@ this consideration. They are required compressibly because a third- 
order derivative must be taken (see earlier discussion). The need for the imposition 
of two boundary conditions for A at the origin is discussed in detail in Ref. [4] ant 
thus is not repeated here. The imposition of boundary values required by the 
nonhnear terms must also be done in a manner that is consistent with the linear 
problem. That is, the values must be imposed in such a way that, when a iinear 
caiculation is done, it is not overspecified. All the above conditions are satisfied w 
the boundarv values shown in Table I. 

5. TIME STEP FOR COMPRESSIBLE CALCULATIONS 

As is well known. the addition of compressibility adds the fast Affvtn time sea!:: 
to the problem [I L-131. This shorter time scale can require a much smaher time 
step than would be necessary for an incompressible calcufation. The additionai 
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equations and the shorter time step requirement would both, of course, increase the 
computational cost of the problem. For linear calculations, the implicit method is 
unconditionally stable, and this stability alleviates the need for the smaller time 
step. Just as described in Ref. [4], for an incompressible problem, the value of the 
time step may be chosen to provide convergence of the mode in a few steps, 
independent of the very small time scale behavior. (When the time step is chosen 
in this way, it is no longer a time step but serves as a convergence parameter.) This 
behavior is illustrated for the compressible problem in Fig. 1. The radial and 
poloidal velocity are shown, together with the compressible quantities o and 
I+‘= V V. They are displayed at various times during the evolution for a small time 
step that follows the short-time-scale behavior (A t/rHP = OS) and for a large time 
step (At/r,, = 5.0) for which the calculation cannot resolve very-short-time-scale 
behavior. The time dependence with the small time step is shown on the left, and 
that with the large time step is shown on the right. The quantities displayed are 
very different at times before the mode became a converged eigenfunction, but they 
are the same at the final time shown. The eigenvalues found by the methods of 
Ref. [4] are absolutely identical. Thus, the implicit methods described here bypass 
the requirement of the small time step in solving the linear problem. The implicit 
nature of the numerical algorithm allows the large time step. The short-time-scale 
behavior, which is omitted, is irrelevant to the linear eigenfunction since the eigen- 
function and eigenvalue are independent of the time step for the values chosen. 

11 ;o.s n!=sG 

D,ZD D,=D 

7THp=0.‘3353G “THp~DD3530 

CYLlNDRlCAL 

t:0.5 Bo;“.O% qozG 9 y q z2.3 

FIG. 1. Comparison between linear time evaluations with dr = OS and A/ = 5 (D, = 0). The time is 
shown (in units of Tag) in the center of the figure. W and w are defined in the text. 



FIG. 2. Compariscr, between linear time evolutions *ith D, = G.? and D, = 0 (22 =0.5 ). The 5me 
is show2 (in units of ‘,c@ in the center of the figure. Kyznd w are defined in the text. 

For nonlinear calculations, D., is made nonzero (see Eq. (23) 1. The term this 
introduces has the form of a viscosity that serves to damp the short-wavelength 
wave motion introduced when compressibility is included. A comparison is made 
between linear calculations done with D, = iI and D, = 0.1 in Fig. 2, The damping 
of the wave notion is clear. Note that the iinear eige~funct~o~s and g5wth rates are 
identical after a converged eigenfunction is reached. The linear growth rate is rhow~ 
in Fig. 3 as a function of D,. The growth rate corresponding to D, = IO-’ on the 

extreme left of the graph (labeled ycTHpj iS identical to that for @A = 0. For valces 
of L),4 d 0.1, the growth of the mode and the structure of the linear mode are 
unaffected. For the nonlinear calculation shown later using the same equilibrium. 
D?, = 0.1 was used. The asymptotic growth rate (labded yisHp) is identical to the 
incompressible growth rate. The structure of the mode also undergoes a transition 
from the compressible mode for D,4 ,< 0.1 to the incompressible mode for D,4 2 IQ”. 
As can be seen from examination of Eq. (23), large vaiues of @.? yield a resuit in: 
which R’ ( = V V) is completely damped, giving an incompressible mode. Thv?s, 
using a moderate value for D,4 in the manner described leaves the hear e&en- 
function unchanged in structure (see the bottom of Fig. 2) and in growth (the linear 
growth rate is the same). If too large a value of D, is use 
incompressible linear mode evolves. This technique is somewhat similar to semi- 
implicit techniques used by many [I-, 3 131, The semi-implicit techniques damp the 
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0.0420 Po‘LO% - 

TOROIDAL 

0.0115 I I I 

16’ 10° 10’ IO2 IO3 IO4 

DA +’ 
0 

FIG. 3. Growth rate vs D,. 

Alfven waves by effectively canceling the driving term for these waves. They do so 
with a nondiffusive method. The method used here is, of course, diffusive but leaves 
the linear eigenfunction unchanged. 

6. RESULTS 

The results presented here are of two different types. The first is a comparison 
with previous codes, which serves to validate the FAR code. Codes that evaluate 
precisely the same physics as a new code are usually unavailable (if they were 
readily available the code would not be written!). Thus, it is necessary to validate 
a new code by comparing it with others that are identical only in some limit. The 
code FAR, the subject of this paper, solves the complete set of MHD equations in 
toroidal geometry. However, one set of comparisons given here is with the fully 
compressible, partially implicit, cylindrical-geometry code CYL [ 141, for both 
linear and nonlinear calculations. For the CYL comparison, identical cylindrical 
equilibria were used in both codes. 

Results are also shown for a comparison with the linear, ideal, toroidal geometry 
code ERATO [3]. For the comparisons shown, FAR is run ideally with the 
resistive terms turned off. However, many ideal-mode studies have been done by 
setting S sufficiently large to make the resistive terms negligible. Thus, the ideal 
results can be regarded as either purely ideal calculations or as a limit in which S 
is made very large. 

The second type of results shown is a comparison between compressible and 
incompressible calculations. This comparison is shown to illustrate the capabilities 
of the code. A paper describing a detailed study of the effects of compressibility will 
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x & d 

in the near future. All the results presented here have been checked for 
convergence with respect to the radial mesh and poloidal spectrum (for toroida! 

.culations). Extensive details of these types of convergence studies are given in 
f. [4] and thus are not be repeated here. 
A comparison between FAR and CYL results is shown for a linear calcutabion 

in Fig. 4. Linear compressible terms were kept in both codes with a cy 
equilibrium. The safety factor profile used was 

with q0 = 0.9. 2 = 2, and p0 = 0.6521 [4]. A pressure profile given by 

where $ is the poloida magnetic flux and I)~ is its value at the plasma edge. The 
constant p3 was chosen to give /I0 = 1.0% at the magnetic axis. The equilibrizim 

FIG. 4. Eigenfmxtior. components from FAR and CYL for idectica! equi!ibrium input for an 
m f:= i!! mode. 
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represented a tokamak plasma with an aspect ratio (sL = 2najL, where a and L are 
the radius and length of the cylinder, respectively) of 4.0 and a circular cross 
section. Shown at the left in Fig. 4 is the eigenfunction given by FAR; on the right 
is shown the eigenfunction from CYL, with the three components for (from top to 
bottom) the magnetic field, velocity, current density, and vorticity displayed. The 
mode is a resistive internal kink. At the bottom is the pressure from each code with 
the linear growth rate. As can be seen, both the eigenfunction and the growth rate 
for FAR and CYL are virtually identical. As detailed earlier, FAR uses a formula- 
tion in terms of magnetic fluxes and stream functions, whereas CYL solves the 
primitive magnetic field and velocity equations. FAR must satisfy the conducting 
wall boundary conditions on the magnetic and velocity lields through the fluxes 
and stream functions, whereas in CYL the relevant boundary values can be 
imposed directly on the field components. In addition, FAR is fully implicit, but 
only the diffusive terms are treated implicitly in CYL. Thus, the two codes are 
radically different in their approach to solving the same equations. In Fig. 5, 
another comparison between the codes is shown for larger m, n (M/H = 7/7) and for 

r 
6 ~0.25 

q,=2.3 

min=7:7 

FOG. 5. Eigenfunction components from FAR and CYL for identical equilibrium input for an 
nzjn = l/l mode. 
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q,=2.3 

s= jos 
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q CYL 

FIG. 6. Compariscn between the FAR and CYL, nr.‘>r = i.:l magxtic island widths (31’, , ! as % 
fi;xxiO~ 0’ time. 

higher /I ($, = 19.6 56 ). The other equilibrium parameters were identical to those pi 
Fig. 4. Again, the eigenfunctions and growth rates are in very good agreement. 

i comparison between the nonlinear evolution calculated with FAR aEd GYL 
for a resistive kink is shown in Fig. 6. Compressible ef?ects are included. The 
equilibrium is cylindrical and has the same parameters as tirose for the fro = I “;; 
linear comparison (Fig. 4) except for a smaller aspect ratio (A = 2.0). Shown is I.& 
r&z = l/l magnetic island width vs time. The agreement is quite good. Of course: 
the early growth shows the linear behavior of the two codes. 

Figure 7 shows a comparison between the linear growth rates at various inverse 
aspect ratios, calculated with the ERATO and FA codes. The equiri 

“=f 

p,=hZ 

qo=o.9 

. FAR 

m ERATO 

‘a 

F1.r;. 7. Growth rates from FAR and ERATO YS the inverse aspect rak (F). 
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FIG. 8. Comparison between compressible and incompressible cylindrical growth rates from FAR 
and CYL. 

specified by FF’ = 0 (where F denotes the major radius times the toroidal magnetic 
field and F’ denotes the derivative with respect to the poloidal flux), pressure 
proportional to the square of the poloidal flux, fl, = 1.0, and q0 = 0.9. The mode is 
an ideal internal kink. As can be noted, the agreement is excellent. 

Let us now consider the effect of compressibility on the internal kink (Fig. 8). 
The growth rate is shown as a function of fi,,. The equilibrium parameters are 
identical to those given earlier, with il = 4.0 and p0 adjusted to give the desired &,. 
Compressible and incompressible growth rates were found as detailed earlier. 
Comparisons are shown between growth rates found by use of CYL and FAR. As 
for the CYL-FAR comparison shown earlier, the agreement is quite good for all 
values of fiO and for both compressible and incompressible calculations, 

A nonlinear comparison between compressible and incompressible calculations 
for a resistive kink in toroidal geometry is shown in Fig. 9. The equilibrium used 
was found with parameters identical to those for the PO = 1 %, A = 4.0 case dis- 
cussed earlier except that now the equilibrium has full toroidal effects. Shown is the 
m/n = l/l island width, IV,,,, vs time. A complete reconnection has occurred when 
W,. 1 = 90 %. The process seen corresponds to the classical Kadomtsev reconnection 
when a m/n = l/l resistive kink leads to the formation of a magnetic island that 
grows until it fills the interior of the original q = 1.0 surface. This process has 
flattened the q profile inside the original q = 1.0 surface so that q = 1.0 is no longer 
in the plasma. Through this relaxation the mode is stabilized. The reconnection 
time is slightly shorter for the compressible evolution than for the incompressible. 
This is due, for the most part, to the slight difference in linear growth rate. Thus, 
the gross behavior of the process is very similar for both compressible and 
incompressible evolutions. 
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FIG. 9. Magnetic island width ( W, ,) YS time from FAR calculations with compressibie a:d 
incompressible equations. Both are fully toroidal. 
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FIG. IQ. Comparison of the toroidal current density (J:), the pressure (p), the m/n = !,!I helical flur 
contours, and the safety factor from the nonlinear toroidal FAR calculations with compressible and 

incompressible equations. This comparison is made when the island width is 48 % of ?he minort radius. 



290 CHARLTON ET AL. 

1 

-2.97l ” -. .J l-4.9, 
7 

-1 p , -I 
P 

, 

INCOMPRESSIBLE COMPRESSIBLE 

W,,,‘75% 

FIG. 11. Comparison of the toroidal current density (J;), the pressure (p), the m/n = 111 helical flux 
contours, and the safety factor from the nonlinear toroidal FAR calculations with compressible and 
incompressible equations. This comparison is made when the island width is 75?;0 of the minor radius. 

The details of the nonlinear evolution are shown in Figs. 10 and 11. The current 
density profiles, pressure profiles, nz/fz = l/l helical flux contours, and safety factor 
profiles are shown in Fig. 10 at the time when the magnetic island width is 48% of 
the length of the minor radius. The characteristic spike in the current density has 
developed with an accompanying flattening of the profile over the region covered 
by the magnetic island. The current density profile for the compressible case is very 
similar to that for the incompressible case. This is also true of the gross features of 
the pressure profiles. The details of the pressure profiles are quite different, however. 
For the calculations including compressibility effects, the pressure profile decreases 
monotonically through the island region; in the incompressible limit, however, the 
pressure profile exhibits a secondary maximum in this region. The resulting 
pressure profile for the calculation in the incompressible limit exhibits a great deal 
more structure than in the compressible case. The reason for these differences can 
be seen in the helical flux contour shown directly below the pressure profiles. The 
magnetic island for the incompressible case is much deeper, as shown by the large 
number of contours in the island region. The island for the compressible case, on 
the other hand, is very shallow, with no contours (indicating that the depth is less 
than the difference between the values of the flux on each contour). There is also 
more structure in the incompressible case, indicating the contribution is higher nz 
values. Thus, the pressure, which is an approximate flux surface quantity, shows 
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both the effect of the deeper island by having a secondary peak and the effect of the 
increased structure in the flux behavior. The safety factor profiles are quite similar. 
however, showing the flattening that results as the plasma evolves toward a state 
in which the q = 1 surface is removed from the plasma. Thus, there are large 
differences in the details of the dynamical evolution for the two cases considered. 
The features just noted in Fig. 10 (when the island width was 8 243) are also preser,t 
but enhanced in Fig. 11 for an island width of 75%. A wel developed secondary 
peak in the pressure profile is now evident for the incompressible case, whereas the 
pressure decreases monotonically in the compressible calculation. The pressure stili 
exhibits much more detailed structure incompressibly than compressibly. Field line 
plots are shown in Fig. 12 for the same island widths as in Figs. 10 and 1 i 
(, lT’L:, = 48 % and W,, I = 72%). The field line plots were generated by fohowing a 
field line around the torus many times, leaving a point as a given poloida! plane is 
passed. They generally exhibit the same structure as the ~‘PZ = I.;‘1 helical G:J:L 
contours The closed curves on the field line plots, bowever, do not s 
spaced itux surfaces, and thus the deepness of the islands in flux is not exhibited. 

The dominant n:/n = 1,!1 component of the linear e~ge~f~~~~t~o~s is shown in 
Fig. i3 f~o: the equilibrium whose nonlinear evohrtion is shown in Figs. !Gti2. The 
modes are very similar except for the toroidal velocity, which is very diffe~nt, 
particuiariy in the region inside the q = 1.0 surface. 

INCOMPRESSIBLE 

ORNL-OWG 88-3175 FED 
COMPRESSIBLE 

w,/,=48% 

INCOMPRESSIBLE CO!viPk?ESSIBLE 

F!G. 13. Field lice plots at the same points in the nonlinear eroixtion as shown k Figs 10 ar.c i 1. 
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FIG. 13. Linear eigenfunctions for the same equilibrium for which nonlinear results are shown in 
Figs. l&12. 

7. DISCUSSION AND CONCLUSIONS 

The computer code FAR, which performs linear or nonlinear and resistive or 
ideal MHD calculations in full toroidal geometry with no ordering assumptions, 
has been constructed and validated. The code can be used for either compressible 
or incompressible calculations. It uses a fully implicit algorithm for linear calcula- 
tions. This permits very efficient linear calculations because a very large step size 
can be used which permits fast convergence to the linear eigenfunction. When a 
systematic parameter scan is made (so that a good guess for the growth rate is 
known), a few “time” steps are sufficient to give converged linear eigenfunctions. 

For nonlinear calculations, the nonlinear terms are treated explicitly, which 
makes the time step requirement essentially that of an explicit code. In the non- 
linear compressible case, however, the short-wavelength wave motion introduced by 
the compressibility can be damped without altering the linear behavior. Therefore, 
the time step required for nonlinear compressible calculations is nearly the same as 
that for incompressible calculations. 
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